Ha kapcsolatba szeretne lépni a Tudóstér adminisztrátoraival, kérjük töltse ki az alábbi űrlapot, vagy küldjön e-mailt a publikacioklib.unideb.hu címre.
Bejelentkezés
A Tudóstér funkcióinak nagy része bejelentkezés nélkül is elérhető. Bejelentkezésre az alábbi műveletekhez van szükség:
Gát, G.:
Almost everywhere divergence of Cesaro means of subsequences of partial sums of trigonometric Fourier series.
Math. Ann. 389 (4), 4199-4231, 2024.
Blahota, I.,
Gát, G.:
Approximation by Subsequences of Matrix Transform Means of Some Two-Dimensional Rectangle Walsh-Fourier Series.
J. Fourier Anal. Appl. 30 (5), 1-35, (cikkazonosító: 51), 2024.
Blahota, I.,
Gát, G.:
Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series.
Acta Univ. Sapientiae, Mathematica. 15 (2), 244-258, 2023.
Gát, G.,
Goginava, U.:
Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh-Fourier series.
Arab. J. Math. 11 (2), 241-259, 2022.
Gát, G.,
Lucskai, G.:
Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of 2-Adic Integers.
P-Adic Num Ultrametr Anal Appl. 14 (2), 116-137, 2022.
Gát, G.,
Lucskai, G.:
Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers.
Novi Sad J. Math. 52 (2), 151-164, 2022.
Blahota, I.,
Gát, G.:
On the Rate of Approximation by Generalized de la Vallee Poussin Type Matrix Transform Means of Walsh-Fourier Series.
P-Adic Num Ultrametr Anal Appl. 14 (Suppl.), S59-S73, 2022.
Anas, A. M. A. J.,
Gát, G.:
Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters.
Ukr. Math. J. 73 (3), 337-358, 2021.
Gát, G.,
Tilahun, A.:
On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems.
Miskolc Math. Notes. 21 (2), 823-840, 2020.
Gát, G.,
Goginava, U.:
Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series.
J. Contemp. Math. Anal. 54 (4), 210-215, 2019.
Gát, G.:
On the convergence of Fejér means of some subsequences of partial sums of Walsh-Fourier series.
Annales Univ. Sci. Budapest., Sect. Comp. 49, 187-198, 2019.
Gát, G.:
Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh-Fourier Series.
J. Fourier Anal. Appl. 24 (5), 1249-1275, 2018.