EN HU

Gát György

Publication list

2024
1.
Gát, G.: Almost everywhere divergence of Cesaro means of subsequences of partial sums of trigonometric Fourier series.
Math. Ann. 389 (4), 4199-4231, 2024.
Journal metrics:
D1 Mathematics (miscellaneous) (2023)
2.
Blahota, I., Gát, G.: Approximation by Subsequences of Matrix Transform Means of Some Two-Dimensional Rectangle Walsh-Fourier Series.
J. Fourier Anal. Appl. 30 (5), 1-35, (article identifier: 51), 2024.
Journal metrics:
Q1 Analysis (2023)
Q1 Applied Mathematics (2023)
Q1 Mathematics (miscellaneous) (2023)
2023
3.
Gát, G., Goginava, U.: Cesàro means with varying parameters of Walsh-Fourier series.
Period. Math. Hung. 87 (1), 57-74, 2023.
Journal metrics:
Q2 Mathematics (miscellaneous)
4.
Blahota, I., Gát, G.: Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series.
Acta Univ. Sapientiae, Mathematica. 15 (2), 244-258, 2023.
Journal metrics:
Q4 Mathematics (miscellaneous)
2022
5.
Gát, G., Goginava, U.: Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh-Fourier series.
Arab. J. Math. 11 (2), 241-259, 2022.
Journal metrics:
Q3 Mathematics (miscellaneous)
6.
Gát, G., Lucskai, G.: Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of 2-Adic Integers.
P-Adic Num Ultrametr Anal Appl. 14 (2), 116-137, 2022.
Journal metrics:
Q2 Mathematics (miscellaneous)
7.
Gát, G., Lucskai, G.: Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers.
Novi Sad J. Math. 52 (2), 151-164, 2022.
Journal metrics:
Q4 Mathematics (miscellaneous)
8.
Blahota, I., Gát, G.: On the Rate of Approximation by Generalized de la Vallee Poussin Type Matrix Transform Means of Walsh-Fourier Series.
P-Adic Num Ultrametr Anal Appl. 14 (Suppl.), S59-S73, 2022.
Journal metrics:
Q2 Mathematics (miscellaneous)
9.
Gát, G., Goginava, U.: The Walsh-Fourier Transform on the Real Line.
J. Contemp. Math. Anal.-Armen. Aca. 57 (4), 205-214, 2022.
Journal metrics:
Q4 Analysis
Q3 Applied Mathematics
Q4 Control and Optimization
2021
10.
Anas, A. M. A. J., Gát, G.: Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters.
Ukr. Math. J. 73 (3), 337-358, 2021.
Journal metrics:
Q2 Mathematics (miscellaneous)
11.
Gát, G., Tilahun, A.: Multi-parameter setting (C,α) means with respect to one dimensional Vilenkin system.
Filomat. 35 (12), 4121-4133, 2021.
Journal metrics:
Q2 Mathematics (miscellaneous)
12.
Gát, G., Lucskai, G.: On the negativity of the Walsh-Kaczmarz-Riesz logarithmic kernels.
Math. Pannon. 27 (2), 197-203, 2021.
2020
13.
Gát, G., Toledo, R.: Numerical solution of linear differential equations by Walsh polynomials approach.
Stud. Sci. Math. Hung. 57 (2), 217-254, 2020.
Journal metrics:
Q3 Mathematics (miscellaneous)
14.
Gát, G., Tilahun, A.: On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems.
Miskolc Math. Notes. 21 (2), 823-840, 2020.
Journal metrics:
Q3 Algebra and Number Theory
Q3 Analysis
Q2 Control and Optimization
Q3 Discrete Mathematics and Combinatorics
Q3 Numerical Analysis
15.
Gát, G., Goginava, U.: Pointwise Strong Summability of Vilenkin-Fourier Series.
Math. Notes. 108 (3-4), 499-510, 2020.
2019
16.
Gát, G.: Cesaro Means of Subsequences of Partial Sums of Trigonometric Fourier Series.
Constr. Approx. 49 (1), 59-101, 2019.
Journal metrics:
Q2 Analysis
Q2 Computational Mathematics
Q2 Mathematics (miscellaneous)
17.
Gát, G., Goginava, U.: Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series.
J. Contemp. Math. Anal. 54 (4), 210-215, 2019.
Journal metrics:
Q4 Analysis
Q4 Applied Mathematics
Q4 Control and Optimization
18.
Gát, G., Lucskai, G.: Estimation on the Walsh-Fejer and Walsh logarithmic kernels.
Publ. Math. Debr. 95 (3-4), 415-435, 2019.
Journal metrics:
Q2 Mathematics (miscellaneous)
19.
Gát, G., Goginava, U.: Maximal operators of Cesàro means with varying parameters of Walsh-Fourier series.
Acta math. Hung. 159 (2), 653-668, 2019.
Journal metrics:
Q2 Mathematics (miscellaneous)
20.
Gát, G., Goginava, U.: Norm Convergence of Double Fejér Means on Unbounded Vilenkin Groups.
Anal. Math. 45 (1), 39-62, 2019.
Journal metrics:
Q3 Analysis
Q3 Mathematics (miscellaneous)
21.
Gát, G.: On the convergence of Fejér means of some subsequences of partial sums of Walsh-Fourier series.
Annales Univ. Sci. Budapest., Sect. Comp. 49, 187-198, 2019.
2018
22.
Gát, G.: Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh-Fourier Series.
J. Fourier Anal. Appl. 24 (5), 1249-1275, 2018.
Journal metrics:
Q2 Analysis
Q2 Applied Mathematics
Q1 Mathematics (miscellaneous)
23.
Gát, G., Goginava, U.: Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh-Fourier Series.
Anal. Math. 44 (1), 73-88, 2018.
Journal metrics:
Q2 Mathematics (miscellaneous)
24.
Anas, A. M. A. J., Gát, G.: Convergence of Cesáro means with varying parameters of Walsh-Fourier series.
Miskolc Math. Notes. 19 (1), 303-317, 2018.
Journal metrics:
Q4 Algebra and Number Theory
Q3 Analysis
Q3 Control and Optimization
Q4 Discrete Mathematics and Combinatorics
Q3 Numerical Analysis
25.
Gát, G., Goginava, U.: Subsequences of triangular partial sums of double Fourier series on unbounded Vilenkin groups.
Filomat. 32 (11), 3769-3778, 2018.
Journal metrics:
Q2 Mathematics (miscellaneous)
DEENK University of Debrecen
© 2012 University of Debrecen