Bérczes, A.,
Bugeaud, Y.,
Győry, K.,
Mello, J.,
Ostafe, A.,
Sha, M.:
Explicit bounds for the solutions of superelliptic equations over number fields.
Forum Math. 37 (1), : 135-158, 2025.
Evertse, J. H.,
Győry, K.:
Effective results and methods for diophantine equations over finitely generated domains.
Cambridge University Press, Cambridge, 240 p., 2022.
ISBN: 9781009005852
Győry, K.,
Hajdu, L.,
Sárközy, A.:
On additive and multiplicative decompositions of sets of integers composed from a given set of primes, I (Additive decompositions).
Acta Arith. 202 (1), 29-42, 2022.
Győry, K.,
Hajdu, L.,
Sárközy, A.:
On additive and multiplicative decompositions of sets of integers with restricted prime factors, II: Smooth numbers and generalizations.
Indag. Math.-New Ser. 32 (4), 813-823, 2021.
Győry, K.,
Hajdu, L.,
Sárközy, A.:
On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers).
Indag. Math.-New Ser. 32 (2), 365-374, 2021.
Győry, K.:
Corrigendum to "Bounds for the solutions of S-unit equations and decomposable form equations II": [Publ. Math. Debrecen 94 (2019), 507-526].
Publ. Math. Debr. 97 (3-4), 525, 2020.
Evertse, J. H.,
Győry, K.,
Stewart, C. L.:
Mahler's Work on Diophantine Equations and Subsequent Developments.
Doc Math. Ext.Vol. Mahl.Sel., 149-171, 2019.
Bertók, C.,
Győry, K.,
Hajdu, L.,
Schinzel, A.:
On the smallest number of terms of vanishing sums of units in number fields.
J. Number Theory. 192, 328-347, 2018.
Bugeaud, Y.,
Evertse, J. H.,
Győry, K.:
S-parts of values of univariate polynomials, binary forms and decomposable forms at integral points.
Acta Arith. 184 (2), 151-185, 2018.
Evertse, J. H.,
Győry, K.:
Effective results for discriminant equations over finitely generated integral domains.
In: Number Theory-Diophantine problems uniform distribution and applications. Ed.: Christian Elsholtz, Peter Grabner, Springer, Cham, 237-256, 2017. ISBN: 9783319553566
Bazsó, A.,
Bérczes, A.,
Győry, K.,
Pintér, Á.:
Erratum to the paper "On the resolution of equations Axn - Byn = C in integers x, y and n >= 3, II".
Publ. Math. Debr. 86 (1-2), 251-253, 2015.