The library will operate on a duty schedule between 22 December 2025 and 4 January 2026. During this period, it will be possible to upload publications, but all other services will be suspended.
Bérczes, A.,
Bugeaud, Y.,
Győry, K.,
Mello, J.,
Ostafe, A.,
Sha, M.:
Explicit bounds for the solutions of superelliptic equations over number fields.
Forum Math. 37 (1), : 135-158, 2025.
Győry, K.,
Sárközy, A.,
Hajdu, L.:
On additive and multiplicative decompositions of sets of integers composed from a given set of primes, II (Multiplicative decompositions).
Acta Arith. 210, 191-204, 2023.
Evertse, J. H.,
Győry, K.:
Effective results and methods for diophantine equations over finitely generated domains.
Cambridge University Press, Cambridge, 240 p., 2022.
ISBN: 9781009005852
Győry, K.,
Hajdu, L.,
Sárközy, A.:
On additive and multiplicative decompositions of sets of integers composed from a given set of primes, I (Additive decompositions).
Acta Arith. 202 (1), 29-42, 2022.
Győry, K.,
Hajdu, L.,
Sárközy, A.:
On additive and multiplicative decompositions of sets of integers with restricted prime factors, II: Smooth numbers and generalizations.
Indag. Math.-New Ser. 32 (4), 813-823, 2021.
Győry, K.,
Hajdu, L.,
Sárközy, A.:
On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers).
Indag. Math.-New Ser. 32 (2), 365-374, 2021.
Győry, K.:
Corrigendum to "Bounds for the solutions of S-unit equations and decomposable form equations II": [Publ. Math. Debrecen 94 (2019), 507-526].
Publ. Math. Debr. 97 (3-4), 525, 2020.
Evertse, J. H.,
Győry, K.,
Stewart, C. L.:
Mahler's Work on Diophantine Equations and Subsequent Developments.
Doc Math. Ext.Vol. Mahl.Sel., 149-171, 2019.
Bertók, C.,
Győry, K.,
Hajdu, L.,
Schinzel, A.:
On the smallest number of terms of vanishing sums of units in number fields.
J. Number Theory. 192, 328-347, 2018.
Bugeaud, Y.,
Evertse, J. H.,
Győry, K.:
S-parts of values of univariate polynomials, binary forms and decomposable forms at integral points.
Acta Arith. 184 (2), 151-185, 2018.
Evertse, J. H.,
Győry, K.:
Effective results for discriminant equations over finitely generated integral domains.
In: Number Theory-Diophantine problems uniform distribution and applications. Ed.: Christian Elsholtz, Peter Grabner, Springer, Cham, 237-256, 2017. ISBN: 9783319553566