EN HU

Barczy Mátyás

Teljes publikációs lista

2025
1.
Barczy, M., Páles, Z.: A convexity-type functional inequality with infinite convex combinations.
Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. comput. 58, 47-55, 2025.
2.
Barczy, M., Kocsis, I., Kézi, C. G.: A stochastic approach to physics exercises in mathematics education.
Int J Math Educ Sci Technol. [Epub ahead of print], 1-34, 2025.
Folyóirat-mutatók:
Q1 Applied Mathematics (2024)
Q1 Education (2024)
Q1 Mathematics (miscellaneous) (2024)
3.
Barczy, M., Páles, Z.: Basic properties of generalized [psi]-estimators.
Publ. Math. Debr. 106 (3-4), 499-524, 2025.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous) (2024)
4.
Barczy, M., Páles, Z.: Comparison and equality of generalized psi-estimators.
Ann. Inst. Stat. Math. 77 (2), 217-250, 2025.
Folyóirat-mutatók:
Q2 Statistics and Probability (2024)
5.
Barczy, M., Páles, Z.: Determining classes for generalized psi-estimators.
Statistics. 59 (6), 1325-1352, 2025.
Folyóirat-mutatók:
Q3 Statistics and Probability (2024)
Q3 Statistics, Probability and Uncertainty (2024)
6.
Barczy, M., Páles, Z.: Existence and uniqueness of weighted generalized [psi]-estimators.
Lith. Math. J. 65 (1), 14-49, 2025.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous) (2024)
2024
7.
Barczy, M., Páles, Z.: Comparison and Equality of Bajraktarević-type [psi]-estimators.
REVSTAT - Statistical Journal [Epub ahead of print] (-), -, 2024.
Folyóirat-mutatók:
Q3 Statistics and Probability
2023
8.
Barczy, M., Páles, Z.: Limit Theorems for Deviation Means of Independent and Identically Distributed Random Variables.
J. Theor. Probab. 36 (3), 1626-1666, 2023.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
Q2 Statistics and Probability
Q2 Statistics, Probability and Uncertainty
2021
9.
Barczy, M., Burai, P.: Limit theorems for Bajraktarevic and Cauchy quotient means of independent identically distributed random variables.
Aequ. Math. 96 (2), 279-305, 2021.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q2 Discrete Mathematics and Combinatorics
Q2 Mathematics (miscellaneous)
10.
Barczy, M., Dudás, Á., Gáll, J.: On approximations of value at risk and expected shortfall involving kurtosis.
Commun. Stat.-Simul. Comput. 52 (3), 770-794, 2021.
Folyóirat-mutatók:
Q3 Modeling and Simulation
Q3 Statistics and Probability
2018
11.
Barczy, M., Lovas, R. L.: Karhunen-Loève expansion for a generalization of Wiener bridge.
Lith. Math. J. 58 (4), 341-359, 2018.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
12.
Barczy, M., Nyul, B., Pap, G.: Least-Squares Estimation for the Subcritical Heston Model Based on Continuous-Time Observations.
J Stat Theory Pract. 13 (1), 1-22, (cikkazonosító: 18), 2018.
Folyóirat-mutatók:
Q3 Statistics and Probability
2017
13.
Barczy, M., Nedényi, F., Pap, G.: Iterated limits for aggregation of randomized INAR(1) processes with Poisson innovations.
J. Math. Anal. Appl. 451 (1), 524-543, 2017.
Folyóirat-mutatók:
Q2 Analysis
Q1 Applied Mathematics
2016
14.
Barczy, M., Kern, P.: A link between Bougerol's identity and a formula due to Donati-Martin, Matsumoto and Yor.
In: Séminaire de Probabilités. Eds.: Catherine Donati-Martin, Antoine Lejay, Alain Rouault, Springer, Cham, 179-188, 2016, (Lecture Notes in Mathematics, ISSN 0075-8434 ; 2169.) ISBN: 9783319444642
15.
Barczy, M., Li, Z., Pap, G.: Moment Formulas for Multitype Continuous State and Continuous Time Branching Process with Immigration.
J. Theor. Probab. 29 (3), 958-995, 2016.
Folyóirat-mutatók:
Q1 Mathematics (miscellaneous)
Q2 Statistics and Probability
Q2 Statistics, Probability and Uncertainty
16.
Barczy, M., Pap, G.: On convergence properties of infinitesimal generators of scaled multitype CBI processes.
Lith. Math. J. 56 (1), 1-15, 2016.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
17.
Barczy, M., Pap, G., T. Szabó, T.: Parameter estimation for the subcritical Heston model based on discrete time observations.
Acta Sci. Math. 82 (1-2), 313-338, 2016.
Folyóirat-mutatók:
Q3 Analysis
Q3 Applied Mathematics
18.
Barczy, M., Körmendi, K., Pap, G.: Statistical inference for critical continuous state and continuous time branching processes with immigration.
Metrika. 79 (7), 789-816, 2016.
Folyóirat-mutatók:
Q2 Statistics and Probability
Q2 Statistics, Probability and Uncertainty
2015
19.
Barczy, M., Nagy, Á., Noszály, C., Vincze, C.: A Robbins-Monro-type algorithm for computing global minimizer of generalized conic functions.
Optimization. 64 (9), 1999-2020, 2015.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q2 Control and Optimization
Q2 Management Science and Operations Research
20.
Barczy, M., Kern, P., Pap, G.: Dilatively stable stochastic processes and aggregate similarity.
Aequ. Math. 89 (6), 1485-1507, 2015.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q1 Discrete Mathematics and Combinatorics
Q1 Mathematics (miscellaneous)
2014
21.
Barczy, M., Ispány, M., Pap, G.: Asymptotic behavior of conditional least squares estimators for unstable integer-valued autoregressive models of order 2.
Scand. J. Stat. 41 (4), 866-892, 2014.
Folyóirat-mutatók:
Q1 Statistics and Probability
Q1 Statistics, Probability and Uncertainty
22.
Barczy, M., Doering, L., Li, Z., Pap, G.: Parameter estimation for a subcritical affine two factor model.
J. Stat. Plann. Inference. 151-152, 37-59, 2014.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q2 Statistics and Probability
Q2 Statistics, Probability and Uncertainty
23.
Barczy, M., Doering, L., Li, Z., Pap, G.: Stationarity and ergodicity for an affine two-factor model.
Adv. Appl. Probab. 46 (3), 878-898, 2014.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q2 Statistics and Probability
2013
24.
Barczy, M., Doering, L.: On entire moments of self-similar Markov processes.
Stoch. Anal. Appl. 31 (2), 191-198, 2013.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q3 Statistics and Probability
Q3 Statistics, Probability and Uncertainty
25.
Barczy, M., Doering, L., Li, Z., Pap, G.: On parameter estimation for critical affine processes.
Electron. J. Statist. 7, 647-696, 2013.
Folyóirat-mutatók:
Q1 Statistics and Probability
DEENK Debreceni Egyetem
© 2012 Debreceni Egyetem