EN HU

Nagy Ábris

Nagy Ábris

Teljes publikációs lista

2023
1.
Vincze, C., Nagy, Á.: On Taxicab Distance Mean Functions and their Geometric Applications: Methods, Implementations and Examples.
Fundam. Inform. 189 (2), 145-169, 2023.
Folyóirat-mutatók:
Q3 Algebra and Number Theory
Q3 Computational Theory and Mathematics
Q3 Information Systems
Q4 Theoretical Computer Science
2019
2.
Vincze, C., Nagy, Á.: On the Average Taxicab Distance Function and Its Applications.
Acta Appl. Math. 161 (1), 201-220, 2019.
Folyóirat-mutatók:
Q2 Applied Mathematics
2015
3.
Vincze, C., Nagy, Á.: An algorithm for the reconstruction of hv-convex planar bodies by finitely many and noisy measurements of their coordinate X-rays.
Fundam. Inform. 141 (2-3), 169-189, 2015.
Folyóirat-mutatók:
Q3 Algebra and Number Theory
Q3 Computational Theory and Mathematics
Q2 Information Systems
Q3 Theoretical Computer Science
4.
Barczy, M., Nagy, Á., Noszály, C., Vincze, C.: A Robbins-Monro-type algorithm for computing global minimizer of generalized conic functions.
Optimization. 64 (9), 1999-2020, 2015.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q2 Control and Optimization
Q2 Management Science and Operations Research
5.
Nagy, Á.: A short review on the theory of generalized conics.
Acta Math. Acad. Paedag. Nyíregyh. 31 (1), 81-96, 2015.
Folyóirat-mutatók:
Q4 Education
Q4 Mathematics (miscellaneous)
6.
Vincze, C., Nagy, Á.: Generalized conic functions of hv-convex planar sets: continuity properties and relations to X-rays.
Aequ. Math. 89 (4), 1015-1030, 2015.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q1 Discrete Mathematics and Combinatorics
Q1 Mathematics (miscellaneous)
2014
7.
Nagy, Á., Vincze, C.: Reconstruction of hv-convex sets by their coordinate X-ray functions.
J. Math. Imaging Vis. 49 (3), 569-582, 2014.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q1 Computer Vision and Pattern Recognition
Q1 Condensed Matter Physics
Q2 Geometry and Topology
Q1 Modeling and Simulation
Q2 Statistics and Probability
2012
8.
Vincze, C., Nagy, Á.: On the theory of generalized conics with applications in geometric tomography.
J. Approx. Theory. 164 (3), 371-390, 2012.
Folyóirat-mutatók:
Q2 Analysis
Q2 Applied Mathematics
Q1 Mathematics (miscellaneous)
Q2 Numerical Analysis
2011
9.
Vincze, C., Nagy, Á.: An introduction to the theory of generalized conics and their applications.
J. Geom. Phys. 61 (4), 815-828, 2011.
Folyóirat-mutatók:
Q3 Geometry and Topology
Q3 Mathematical Physics
Q2 Physics and Astronomy (miscellaneous)
2010
10.
Nagy, Á., Vincze, C.: Examples and notes on generalized conics and their applications.
Acta Math. Acad. Paedag. Nyíregyh. 26 (2), 359-375, 2010.
Folyóirat-mutatók:
Q4 Education
Q4 Mathematics (miscellaneous)
2009
11.
Nagy, Á., Rábai, Z., Vincze, C.: On a special class of generalized conics with infinitely many focal points.
Teach. Math. Comp. Sci. 7 (1), 87-99, 2009.
DEENK Debreceni Egyetem
© 2012 Debreceni Egyetem