Ha kapcsolatba szeretne lépni a Tudóstér adminisztrátoraival, kérjük töltse ki az alábbi űrlapot, vagy küldjön e-mailt a publikacioklib.unideb.hu címre.
Bejelentkezés
A Tudóstér funkcióinak nagy része bejelentkezés nélkül is elérhető. Bejelentkezésre az alábbi műveletekhez van szükség:
Debreceni Egyetem. Természettudományi és Technológiai Kar. Matematikai Intézet. Analízis Tanszék / University of Debrecen. Faculty of Science and Technology. Institute of Mathematics. Department of Analysis
Boros, Z.,
Menzer, R.:
An alternative equation for generalized polynomials involving measure and category constraints.
Acta Math. Hung. [Accepted by publisher], 1-18, 2024.
Boros, Z.,
Menzer, R.,
Nagy, G.:
A conditional equation for almost polynomials. In: Report of meeting: The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023..
Aequ. Math. 97 (5-6), 1262, 2023.
Menzer, R.,
Boros, Z.,
Pénzes, E.:
An alternative equation for generalized monomials involving measure. In: Report of meeting: The Twenty-second Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities Hajdúszoboszló (Hungary), February 1-4, 2023.
Ann. Math. Silesianae. 37 (2), 324-325, 2023.
Menzer, R.,
Boros, Z.,
Nagy, G.:
An alternative equation for generalized polynomials of degree two. In: Report of meeting: The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023..
Aequ. Math. 97 (5-6), 1268, 2023.
Menzer, R.,
Boros, Z.:
An alternative equation for generalized monomials. In: he Twenty-first Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities Brenna (Poland), February 2-5, 2022.
Ann. Math. Silesianae. 36 (1), 99, 2022.
Boros, Z.,
Tóth, P.:
Interval chains and completeness in ultrapowers of ordered sets.
University of Debrecen, Institute of Mathematics and Faculty of Informatics, Debrecen, 10 p., 2021.
Boros, Z.,
Száz, Á.:
Generalized Schwarz inequalitiesfor generalized semi-inner products on groupoidscan be derived from an equality.
Novi Sad J. Math. 47 (1), 177-188, 2017.
Boros, Z.,
Száz, Á.:
Infimum and supremum completeness properties of ordered sets without axioms.
An. St. Univ. Ovidius Constanta, Ser. Mat. 16 (2), 31-37, 2008.