EN HU

Nagy Gergő

Nagy Gergő
Analízis Tanszék
egyetemi adjunktus 2008-

Teljes publikációs lista

2024
1.
Nagy, G.: Connections between points of convexity of functions and centrality of elements in C*-algebras.
ELA. 40, 654-662, 2024.
Folyóirat-mutatók:
Q2 Algebra and Number Theory (2023)
2.
Kiss, T., Nagy, G.: On the [sigma]-balancing property of multivariate generalized quasi-arithmetic means.
Math. Inequal. Appl. 27 (4), 1009-1019, 2024.
Folyóirat-mutatók:
Q2 Applied Mathematics (2023)
Q2 Mathematics (miscellaneous) (2023)
2023
3.
Boros, Z., Menzer, R., Nagy, G.: A conditional equation for almost polynomials. In: Report of meeting: The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023..
Aequ. Math. 97 (5-6), 1262, 2023.
4.
Menzer, R., Boros, Z., Nagy, G.: An alternative equation for generalized polynomials of degree two. In: Report of meeting: The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023..
Aequ. Math. 97 (5-6), 1268, 2023.
5.
Nagy, G.: Characterizations of centrality in C*-algebras via local convexity of functions.
6.
Ali, A. H., Páles, Z., Nagy, G.: Estimating Linear Functionals via Factorization: Theory and Applications: In: Report of meeting : The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023.
Aequ. Math. 97 (5-6), 1261, 2023.
2020
7.
Nagy, G.: Maps stemming from the functional calculus that transform a Kubo-Ando mean into another.
Aequ. Math. 94 (4), 761-775, 2020.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q2 Discrete Mathematics and Combinatorics
Q2 Mathematics (miscellaneous)
2019
8.
Gaál, M., Nagy, G.: A Characterization of Unitary-Antiunitary Similarity Transformations via Kubo-Ando Means.
Anal. Math. 45 (2), 311-319, 2019.
Folyóirat-mutatók:
Q3 Analysis
Q3 Mathematics (miscellaneous)
9.
Nagy, G.: Characterizations of Centrality in C?-algebras via Local Monotonicity and Local Additivity of Functions.
Integr. Equ. Oper. Theory. 91 (3), 1-11, (cikkazonosító: 28), 2019.
Folyóirat-mutatók:
Q1 Algebra and Number Theory
Q2 Analysis
10.
Gaál, M., Nagy, G., Szokol, P.: Isometries on Positive Definite Operators with Unit Fuglede-Kadison Determinant.
Taiwan. J. Math. 23 (6), 1423-1433, 2019.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
11.
Nagy, G., Szokol, P.: Maps Preserving Norms of Generalized Weighted Quasi-arithmetic Means of Invertible Positive Operators.
Electron. J. Linear Algebra. 35, 357-364, 2019.
Folyóirat-mutatók:
Q3 Algebra and Number Theory
2018
12.
Gaál, M., Nagy, G.: Maps on positive operators preserving Rényi type relative entropies and maximal f-divergences.
Lett. Math. Phys. 108 (2), 425-443, 2018.
Folyóirat-mutatók:
Q1 Mathematical Physics
Q2 Statistical and Nonlinear Physics
13.
Gaál, M., Nagy, G.: Transformations on Density Operators Preserving Generalised Entropy of a Convex Combination.
Bull. Aust. Math. Soc. 98 (1), 102-108, 2018.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
2016
14.
Nagy, G.: Determinant preserving maps: an infinite dimensional version of a theorem of Frobenius.
Linear Multilinear Algebra. 65 (2), 351-360, 2016.
Folyóirat-mutatók:
Q2 Algebra and Number Theory
15.
Botelho, F., Molnár, L., Nagy, G.: Linear bijections on von Neumann factors commuting with (lambda)-Aluthge transform.
Bull. London Math. Soc. 48 (1), 74-84, 2016.
Folyóirat-mutatók:
Q1 Mathematics (miscellaneous)
16.
Dolinar, G., Kuzma, B., Nagy, G., Szokol, P.: Restricted skew-morphisms on matrix algebras.
Linear Alg. Appl. 490, 1-17, 2016.
Folyóirat-mutatók:
Q1 Algebra and Number Theory
Q1 Discrete Mathematics and Combinatorics
Q2 Geometry and Topology
Q2 Numerical Analysis
17.
Molnár, L., Nagy, G.: Spectral Order Automorphisms on Hilbert Space Effects and Observables: The 2-Dimensional Case.
Lett. Math. Phys. 106 (4), 535-544, 2016.
Folyóirat-mutatók:
Q2 Mathematical Physics
Q2 Statistical and Nonlinear Physics
2015
18.
Nagy, G.: Isometries of the spaces of self-adjoint traceless operators.
Linear Alg. Appl. 484, 1-12, 2015.
Folyóirat-mutatók:
Q2 Algebra and Number Theory
Q2 Discrete Mathematics and Combinatorics
Q2 Geometry and Topology
Q2 Numerical Analysis
2014
19.
Gehér, G. P., Nagy, G.: Maps on classes of Hilbert space operators preserving measure of commutativity.
Linear Alg. Appl. 463, 205-227, 2014.
Folyóirat-mutatók:
Q2 Algebra and Number Theory
Q2 Discrete Mathematics and Combinatorics
Q2 Geometry and Topology
Q2 Numerical Analysis
20.
Nagy, G.: Preservers for the p-norm of linear combinations of positive operators.
Abstract Appl. Anal. 2014, 1-9, 2014.
Folyóirat-mutatók:
Q3 Analysis
Q3 Applied Mathematics
21.
Molnár, L., Nagy, G.: Transformations on Density Operators That Leave the Holevo Bound Invariant.
Int. J. Theor. Phys. 53 (10), 3273-3278, 2014.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
Q3 Physics and Astronomy (miscellaneous)
2013
22.
Nagy, G.: Isometries on positive operators of unit norm.
Publ. Math.-Debr. 82 (1), 183-192, 2013.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
23.
Molnár, L., Nagy, G., Szokol, P.: Maps on density operators preserving quantum f -divergences.
Quantum Inf Process. 12 (7), 2309-2323, 2013.
Folyóirat-mutatók:
Q1 Electrical and Electronic Engineering
Q1 Electronic, Optical and Magnetic Materials
Q1 Modeling and Simulation
Q1 Signal Processing
Q2 Statistical and Nonlinear Physics
Q1 Theoretical Computer Science
2012
24.
Molnár, L., Nagy, G.: Isometries and relative entropy preserving maps on density operators.
Linear Multilinear Algebra. 60 (1), 93-108, 2012.
Folyóirat-mutatók:
Q3 Algebra and Number Theory
2010
25.
Molnár, L., Nagy, G.: Thompson isometries on positive operators: the 2-dimensional case.
Electron. J. Linear Algebra. 20, 79-89, 2010.
Folyóirat-mutatók:
Q3 Algebra and Number Theory
DEENK Debreceni Egyetem
© 2012 Debreceni Egyetem