EN HU

Remete László

Teljes publikációs lista

2023
1.
Bhargava, M., Evertse, J. H., Győry, K., Remete, L., Swaminathan, A. A.: Hermite equivalence of polynomials.
Acta Arith. 209, 17-58, 2023.
Folyóirat-mutatók:
Q2 Algebra and Number Theory
2.
Remete, L.: Hogyan dobjunk fejet 51% eséllyel?.
Debr. szle. 30 (1), 99-102, 2023.
3.
Gaál, I., Remete, L.: On the monogenity of pure quartic relative extensions of Q(i).
Acta Sci. Math. 2023, 1-15, 2023.
Folyóirat-mutatók:
Q3 Analysis
Q3 Applied Mathematics
2021
4.
Remete, L.: A generalization of simplest number fields and their integral basis.
Acta Math. Hung. 163 (2), 437-461, 2021.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
2020
5.
Remete, L.: Integral bases of pure fields with square-free parameter.
Stud. Sci. Math. Hung. 57 (1), 91-115, 2020.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
6.
Gaál, I., Jadrijević, B., Remete, L.: Totally real Thue inequalities over imaginary quadratic fields: an improvement.
Glas. Mat. 55 (2), 191-194, 2020.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
2019
7.
Gaál, I., Remete, L.: Integral Bases and Monogenity of Composite Fields.
Exp. Math. 28 (2), 209-222, 2019.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
8.
Gaál, I., Remete, L.: Power integral bases in cubic and quartic extensions of real quadratic fields.
Acta Sci. Math. 85 (3-4), 413-429, 2019.
Folyóirat-mutatók:
Q2 Analysis
Q2 Applied Mathematics
9.
Gaál, I., Jadrijević, B., Remete, L.: Simplest quartic and simplest sextic Thue equations over imaginary quadratic fields.
Int. J. Number Theory. 15 (1), 11-27, 2019.
Folyóirat-mutatók:
Q2 Algebra and Number Theory
2018
10.
Gaál, I., Remete, L.: Integral bases and monogenity of the simplest sextic fields.
Acta Arith. 183 (2), 173-183, 2018.
Folyóirat-mutatók:
Q2 Algebra and Number Theory
11.
Gaál, I., Jadrijević, B., Remete, L.: Totally real Thue inequalities over imaginary quadratic fields.
Glas. Mat. 53 (2), 229-238, 2018.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
2017
12.
Gaál, I., Remete, L.: Integral bases and monogenity of pure fields.
J. Number Theory. 173, 129-146, 2017.
Folyóirat-mutatók:
Q1 Algebra and Number Theory
13.
Gaál, I., Remete, L.: Non-monogenity in a family of octic fields.
Rocky Mt. J. Math. 47 (3), 817-824, 2017.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
2016
14.
Gaál, I., Remete, L., Szabó, T.: Calculating power integral bases by using relative power integral bases.
Funct. Approx. Comment. Math. 54 (2), 141-149, 2016.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
2015
15.
Gaál, I., Remete, L.: Power integral bases in a family of sextic fields with quadratic subfields.
Tatra Mt. Math. Publ. 64 (1), 59-66, 2015.
Folyóirat-mutatók:
Q4 Mathematics (miscellaneous)
16.
Gaál, I., Remete, L.: Solving binomial Thue equations.
J. Algebra, Number Theory & Appl. 36 (1), 29-42, 2015.
Folyóirat-mutatók:
Q4 Algebra and Number Theory
2014
17.
Gaál, I., Remete, L.: Binomial Thue equations and power integral bases in pure quartic fields.
J. Algebra, Number Theory & Appl. 32 (1), 49-61, 2014.
Folyóirat-mutatók:
Q4 Algebra and Number Theory
18.
Gaál, I., Remete, L., Szabó, T.: Calculating power integral bases by solving relative Thue equations.
Tatra Mt. Math. Publ. 59 (1), 79-92, 2014.
Folyóirat-mutatók:
Q4 Mathematics (miscellaneous)
DEENK Debreceni Egyetem
© 2012 Debreceni Egyetem