EN HU

Kertész Dávid Csaba

Kertész Dávid Csaba

Publication list

2023
1.
Bessenyei, M., Kertész, D. C.: Peano property, two dimensional triangles, constant curvature.
J. Math. Anal. Appl. 526 (1), 1-10, (article identifier: 127205), 2023.
Journal metrics:
Q1 Analysis
Q2 Applied Mathematics
2021
2.
Bessenyei, M., Kertész, D. C., Lovas, R. L.: A sandwich with segment convexity.
J. Math. Anal. Appl. 500 (1), 1-12, (article identifier: 125108), 2021.
Journal metrics:
Q1 Analysis
Q2 Applied Mathematics
2016
3.
Kertész, D. C., Lovas, R. L.: A generalization and short proof of a theorem of Hano on affine vector fields.
SUT journal of Mathematics. 53 (2), 83-87, 2016.
Journal metrics:
Q3 Mathematics (miscellaneous)
2015
4.
Kertész, D. C., Tamássy, L.: Differentiable distance spaces.
Acta Math. Hung. 148 (2), 405-424, 2015.
Journal metrics:
Q2 Mathematics (miscellaneous)
5.
Kertész, D. C.: Finslerian Lie derivative and Landsberg manifolds.
Acta math. Acad. Paedagog. Nyházi. 31 (2), 297-308, 2015.
Journal metrics:
Q4 Education
Q4 Mathematics (miscellaneous)
6.
Deng, S., Kertész, D. C., Yan, Z.: There are no proper Berwald-Einstein manifolds.
Publ. Math.-Debr. 86 (1-2), 245-249, 2015.
Journal metrics:
Q3 Mathematics (miscellaneous)
2014
7.
Aradi, B., Kertész, D. C.: A characterization of holonomy invariant functions on tangent bundles.
Balk. J. Geom. Appl. 19 (2), 1-10, 2014.
Journal metrics:
Q3 Geometry and Topology
8.
Aradi, B., Kertész, D. C.: Isometries, submetries and distance coordinates on Finsler manifolds.
Acta Math. Hung. 143 (2), 337-350, 2014.
Journal metrics:
Q2 Mathematics (miscellaneous)
2013
9.
Szilasi, J., Lovas, R. L., Kertész, D. C.: Connections, sprays and Finsler structures.
World Scientific Publishing Co., Hackensack, NJ, 709 p., 2013. ISBN: 9789814440097
10.
Tran Quoc, B., Kertész, D. C., Tamássy, L.: On projectively flat Finsler spaces.
Acta Math. Hung. 141 (4), 383-400, 2013.
Journal metrics:
Q2 Mathematics (miscellaneous)
2011
11.
Szilasi, J., Lovas, R. L., Kertész, D. C.: Several ways to a Berwald manifold and some steps beyond.
Extr. Math. 26 (1), 89-130, 2011.
DEENK University of Debrecen
© 2012 University of Debrecen