Ha kapcsolatba szeretne lépni a Tudóstér adminisztrátoraival, kérjük töltse ki az alábbi űrlapot, vagy küldjön e-mailt a publikacioklib.unideb.hu címre.
Bejelentkezés
A Tudóstér funkcióinak nagy része bejelentkezés nélkül is elérhető. Bejelentkezésre az alábbi műveletekhez van szükség:
The influence of joints and bedding planes on the slope stability: case studies from highly fractured basement terrains and sandstone sedimentary rocks
Daoud, A. M. A.,
Abdalah, E. M.,
Mohsen, S.,
Rózsa, P.:
The influence of joints and bedding planes on the slope stability: case studies from highly fractured basement terrains and sandstone sedimentary rocks.
21st Meeting of the Central European Tectonic Studies Groups 21, 20, 2025.
The influence of joints and bedding planes on the slope stability: case studies from highly fractured basement terrains and sandstone sedimentary rocks
szerzők:
Daoud Abazar Mohamed Ahmed
Abdalah, Ezaldin M.
Mohsen, Sarah
Rózsa Péter
levelező szerző:
Daoud Abazar Mohamed Ahmed
kiadás éve:
2025
típus:
folyóiratcikk
műfaj:
poszter
folyóirat:
21st Meeting of the Central European Tectonic Studies Groups
nyelv:
angol
MAB:
természettudományok, földtudományok
absztrakt:
The stability of slopes strongly influences discontinuities in structurally complex terrains, particularly joints and bedding planes. This study investigates the role of structural anisotropy in slope instability through two case studies: (1) sandstone-dominated sedimentary sequences in northern Sudan, where the bedding planes present potential failure surfaces in both field and laboratory measurements, and (2) highly fractured basement rocks in the Red Sea Hills northeast of Sudan, where dense joint networks and foliations control slope failures. In basement complex rocks, four types of rock failure were identified: plane, toppling, wedge, and circular failures. In contrast, in sedimentary sequences, bedding plane orientation significantly affects the likelihood of plane, and toppling failures. Field observations and geomechanical analyses are used to measure rock mass properties. Results indicate higher compressive strength when the load direction is perpendicular (beta = 90) or parallel (beta = 0) to bedding planes, and lower values when inclined (beta = 45). The findings underline the importance of discontinuities in slope stability assessments, particularly in fields where anisotropy plays a primary role on failure mechanisms.